Return to Homepage

Manufacturer Uses 3D Printing to Produce Metal Antenna in One Piece Rather than a Hundred Parts

Optisys is a provider of sophisticated, metal micro-antenna products for high performance aerospace and defense applications. Recently, they used additive manufacturing to create an antenna that was 95% lighter and 25% cheaper than the antenna manufactured by traditional methods.

The Optisys team has a combined 60 years of aerospace experience in SATCOM (satellite communications), RF design, LOS (Line-of-Sight) communications and Mechanical Design.

"We've spent years on parameter and process development of our antenna-system optimization technology package," says Clinton Cathey, Optisys CEO. "We validate our designs through simulation, test to all aerospace frequencies, and manufacture military-ruggedized production parts."

Optisys redesigned a large, multi-part antenna assembly (above) into a palm-sized, lighter, one-piece, 3D-printed metal antenna (below). The component was manufactured with a Concept Laser machine to provide optimum radio frequency (RF) performance.

 

 

 

 

One part manufactured by Optisys is an antenna. Antennas are critical for conveying information -- voice, video and/or data -- across long distances. They are widely employed in commercial and military aircraft, spacecraft, satellite communications, unmanned aerial vehicles (UAVs), and by ground terminals and land-based troops.

Yet the complex radio frequency (RF) components that make up an antenna system can be large and heavy -- characteristics that can impact mobility and performance.

"Companies in the commercial and military space are pressured for shorter lead-times, lighter weight and smaller antennas," says Cathey. "By combining RF design simulation, mechanical engineering, and system optimization focused on AM, we provide metal 3D-printed antenna products at greatly reduced size, weight, lead-times, part count and cost -- with as-good or better RF performance than conventionally manufactured systems. We're creating structures that were simply not possible to produce in the past."

The test-piece demonstrator project involved a complete redesign of a high-bandwidth, directional tracking antenna array for aircraft (known as a Ka-band 4x4 Monopulse Array). Optisys performed every aspect of the design work in-house and printed the component in a single piece on their Concept Laser machine.

Optisys utilizes recent advances in manufacturing technology to provide metal 3D printed antenna products for high performance aerospace and defense applications.

 

 

"Concept Laser's powder-bed fusion in particular is perfect for this application because of the fine resolution it provides for antennas functioning in the one to one-hundred Gigahertz [GHz] range of RF in which most of our potential customers operate," says Cathey.

Manufacturing antenna systems via conventional methods such as brazing and plunge EDM is a complex, multistage process that can take an average of eight months of development time and three to six more of build time, says Optisys COO Robert Smith, M.E.

"Our unique offering is that we redesign everything from an additive manufacturing perspective," says Smith. "We take into account the entire system functionality, combine many parts into one, and reduce both development and manufacturing lead times to just a few weeks. The result is radically improved size and weight at lower costs."

Optisys conducted a profitability analysis on how their redesigned microwave antennae test piece compared to a legacy design that is traditionally manufactured. By optimizing their design for additive manufacturing, Optisys realized the following benefits:

Other Advantages of 3D Printing

"In addition to what our test-piece project revealed, 3D printing offers a number of other advantages," says Smith. "When we design multiple antenna components into a single part, we reduce the overall insertion loss of the combined parts. And because our antennas are so much smaller this also lowers insertion loss dramatically despite the higher surface roughness of AM build, for similar or even better RF performance than conventional assemblies."

Concept Laser's X LINE 2000R is the largest powder-bed metal additive system in the world.

 

 

Optisys can print in a variety of metals with its Concept Laser machine, though for antenna products they prefer aluminum because of its surface conductivity, light weight, corrosion resistance and strength under shock and vibration.

"3D-printed metal will have virtually the same properties as a solid piece of the same material for RF performance," says Smith. "Structurally the products have been tested in rigorous vibration environments and they also have the same coefficient of thermal expansion (CTE) as wrought metals. This also gives them better stability over temperature than plastic RF components."

Part consolidation through AM provides a number of downstream benefits as well, Smith says. "Reducing part count also reduces assembly and rework. It's easy to add features to an existing AM design, easier to assemble the finished components and, long-term, you have less testing, maintenance and service when you have fewer parts."

Want more information? Click below.

Concept Laser

Optisys

Return to Homepage

Copyright © 2017 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy ::m::