Return to Homepage

3 New Automated Solutions for Surface Finishing of Precision Parts

As surface finishing technology continues to evolve, so too does the demand for more efficient, stable and accurate finishing processes -- especially when it comes to complex, high-value components. Rosler Metal Finishing is meeting this demand head-on by providing three innovative surface finishing solutions for precision components.

For decades mass finishing methods have been successfully used for deburring, edge radiusing, surface smoothing and polishing of mass-produced parts in batch or continuous feed systems. Nowadays, however, there is a growing demand for the defined finishing of single, high value components with complex or freeform surfaces that cannot touch each other during the process.

High-volume, and high-value, surface finishing is possible. These turbine vanes have been surface grinded and smoothed.



For the reliable and efficient treatment of such components, Rosler Metal Finishing offers various new and improved systems, which guarantee absolute repeatable finishing results. They allow all-around surface treatment of work pieces or targeted finishing of specific surface areas in fully automatic processes that can be perfectly integrated into complete manufacturing lines.

Surf Finisher -- The New Standard for Precision Surface Finishing

With an array of technical features Rosler's innovative Surf Finisher machine opens up completely new possibilities for precise and targeted treatment of complex components, wet or dry. The heart of this finishing process consists of one, occasionally, two 6-axis robots and a rotating work bowl filled with specially selected grinding or polishing media. The work bowl comes in different sizes allowing the treatment of relatively large components or the simultaneous, entirely touch-free finishing of multiple work pieces.

The innovative Surf-Finisher opens new possibilities for the fully automatic processing of components with complex shapes. It even allows the targeted deburring, smoothing and polishing of specific surface areas on work pieces.



The robot fulfills two functions: first, equipped with a specially designed gripper, it performs a material handling task by picking up the work pieces from and returning them to a transport belt, immersing them into the work bowl and conveying them to a cleaning/rinsing station. Secondly, the robot guides the work pieces through the processing media in pre-programmed movements including defined treatment angles, different immersion depths and rotary motion. This flexibility allows the targeted finishing of specific surface areas on the work pieces.

During the complete process, the work bowl containing the processing media is also rotating at a speed of up to 80 RPM. The actual speed is determined by the work pieces to be treated and the respective finishing task. The robotic movement combined with the work bowl rotation creates a "surfing" effect with very high pressure between work piece and media. This concurrent, intensive pressure creates a surface smoothing effect that produces perfect finishes within relatively short cycle times. Even with complex work piece geometries the surf finisher generates surface readings as low as Ra = 0.04 µm (1.6 micro inches).

High-Frequency-Finishing -- Perfect and Quick Surface Finishes Through Vibration

The newly developed Rosler High-Frequency-Finisher (HFF) also includes one or more robots, which carry out two functions: material handling and programmed movement of the work pieces through the processing media.

During the HFF process the robot immerses the rotating work pieces mounted to a specially designed gripper into the media agitated by vibration. The finished work pieces undergo a subsequent rinse cleaning process.



In the HFF system, the media for dry or wet processing within the work bowl is agitated by vibration with a speed of up to 3,000 RPM. The robot, equipped with a specially designed gripper, immerses the work pieces into the agitated media. The dual movement of the robot and finishing media results in a high pressure and an all-around, highly intensive treatment of the parts. During the process the robot may completely remove the work pieces out of the media, turn them and immerse them again.

The combination of the independent robotic movement of the work pieces and the vibratory movement of specially selected media produces perfectly homogeneous and repeatable deburring, grinding and polishing results in surprisingly short cycle times. Throughout the whole process the work pieces never touch each other.

Drag Finishing Process Featuring Fully Automatic Loading and Handling

The most recent example is Rosler's Drag Finishing machines, which now feature fully automatic loading and unloading of the work pieces. This innovative redesign was triggered to meet the needs of Walter AG, a multinational manufacturer of precision machining tools, with well-known brands such as; Valenite, Titex and Prototyp.

In order to completely automate the deburring of precision components like tool bodies, drag finishers like the model R 6/1000 SF-Auto were completely redesigned to allow robotic loading/unloading of the work pieces.



Walter uses Rosler's fully automatic Drag Finishers to deburr a variety of different sized tool bodies. The custom engineered system consists of two interlinked drag finishers with six (6) working spindles each and a robot that automatically mounts and dismounts the components to and from the spindles.

This high precision finishing process required a specialized safety load system that was developed by combining surface modeling and load pattern simulation. The positioning of the spindles and the exact carousel location is determined by the controls of the drag finishing system. To ensure that handling errors do not occur, electronic sensors continuously monitor the correct pneumatic coupling of the work pieces to the spindles.

Once loaded, Walter's tool bodies are then "dragged" through the stationary processing media. The process parameters such as; carousel and spindle speeds, immersion depth and treatment times are stored in pre-set programs in the PLC. After completion of the finishing cycle the robot removes the tool bodies, moves them to a rinse and cleaning station and finally, places them onto a tray.

Parts with critical surface finish standards are also handled effectively. For example, a hip implant stem, polished to Ra = 0.04 µm (1.6 µin).



This innovative Drag Finishing system allows for fully automatic dry or wet processing without the work pieces ever touching each other. Up to this point, these types of components were typically deburred, smoothed and polished manually. This is not only costly but produces inconsistent finishing results. This new Drag Finishing technology represents a significant milestone in which repeatable and efficient surface finishing can be achieved for orthopedic implants, geared components, machining tools, as well as aerospace and automotive components.

Want more information? Click below.


Return to Homepage

Copyright © 2019 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy ::m::